99 research outputs found

    In search of an observational quantum signature of the primordial perturbations in slow-roll and ultra slow-roll inflation

    Get PDF
    In the standard inflationary paradigm, cosmological density perturbations are generated as quantum fluctuations in the early Universe, but then undergo a quantum-to-classical transition. A key role in this transition is played by squeezing of the quantum state, which is a result of the strong suppression of the decaying mode component of the perturbations. Motivated by ever improving measurements of the cosmological perturbations, we ask whether there are scenarios where this decaying mode is nevertheless still observable in the late Universe, ideally leading to a ``smoking gun'' signature of the quantum nature of the perturbations. We address this question by evolving the quantum state of the perturbations from inflation into the post-inflationary Universe. After recovering the standard result that in slow-roll (SR) inflation the decaying mode is indeed hopelessly suppressed by the time the perturbations are observed (by ∼115\sim 115 orders of magnitude), we turn to ultra slow-roll (USR) inflation, a scenario in which the usual decaying mode actually grows on super-horizon scales. Despite this drastic difference in the behavior of the mode functions, we find also in USR that the late-Universe decaying mode amplitude is dramatically suppressed, in fact by the same ∼115\sim 115 orders of magnitude. We finally explain that this large suppression is a general result that holds beyond the SR and USR scenarios considered and follows from a modified version of Heisenberg's uncertainty principle and the observed amplitude of the primordial power spectrum. The classical behavior of the perturbations is thus closely related to the classical behavior of macroscopic objects drawing an analogy with the position of a massive particle, the curvature perturbations today have an enormous effective mass of order mpl2/H02∼10120m_{\rm pl}^2/H_0^2 \sim 10^{120}, making them highly classical.Comment: 27 pages, 7 figures. Comments welcom

    To Bin or Not To Bin: Decorrelating the Cosmic Equation of State

    Full text link
    The physics behind the acceleration of the cosmic expansion can be elucidated through comparison of the predictions of dark energy equations of state to observational data. In seeking to optimize this, we investigate the advantages and disadvantages of using principal component analysis, uncorrelated bandpowers, and the equation of state within redshift bins. We demonstrate that no one technique is a panacea, with tension between clear physical interpretation from localization and from decorrelated errors, as well as model dependence and form dependence. Specific lessons include the critical role of proper treatment of the high redshift expansion history and the lack of a unique, well defined signal-to-noise or figure of merit.Comment: 26 pages, 28 figure

    Calibrating Dark Energy

    Full text link
    Exploring the diversity of dark energy dynamics, we discover a calibration relation, a uniform stretching of the amplitude of the equation of state time variation with scale factor. This defines homogeneous families of dark energy physics. The calibration factor has a close relation to the standard time variation parameter w_a, and we show that the new, calibrated w_a describes observables, i.e. distance and Hubble parameter as a function of redshift, typically to an accuracy level of 10^{-3}. We discuss implications for figures of merit for dark energy science programs.Comment: 9 pages, 10 figure

    Primordial physics from large-scale structure beyond the power spectrum

    Get PDF
    We study constraints on primordial mode-coupling from the power spectrum, squeezed-limit bispectrum and collapsed trispectrum of matter and halos. We describe these statistics in terms of long-wavelength 22-point functions involving the matter/halo density and position-dependent power spectrum. This allows us to derive simple, analytic expression for the information content, treating constraints from scale-dependent bias in the halo power spectrum on the same footing as those from higher order statistics. In particular, we include non-Gaussian covariance due to long-short mode-coupling from non-linear evolution, which manifests itself as long-mode cosmic variance in the position-dependent power spectrum. We find that bispectrum forecasts that ignore this cosmic variance may underestimate σ(fNL)\sigma(f_{\rm NL}) by up to a factor ∼3\sim 3 for the matter density (at z=1z=1) and commonly a factor ∼2\sim 2 for the halo bispectrum. Constraints from the bispectrum can be improved by combining it with the power spectrum and trispectrum. The reason is that, in the position-dependent power spectrum picture, the bispectrum and trispectrum intrinsically incorporate multitracer cosmic variance cancellation, which is optimized in a joint analysis. For halo statistics, we discuss the roles of scale-dependent bias, matter mode-coupling, and non-linear, non-Gaussian biasing (b11(h)b_{11}^{(h)}). While scale-dependent bias in the halo power spectrum is already very constraining, higher order halo statistics are competitive in the regime where stochastic noise in the position-dependent halo power spectrum is low enough for cosmic variance cancellation to be effective, i.e.~for large halo number density and large kmaxk_{\rm max}. This motivates exploring this regime observationally.Comment: 48 pages, 20 figures. Comments welcom

    CMB Lensing Constraints on Neutrinos and Dark Energy

    Full text link
    Signatures of lensing of the cosmic microwave background radiation by gravitational potentials along the line of sight carry with them information on the matter distribution, neutrino masses, and dark energy properties. We examine the constraints that Planck, PolarBear, and CMBpol future data, including from the B-mode polarization or the lensing potential, will be able to place on these quantities. We simultaneously fit for neutrino mass and dark energy equation of state including time variation and early dark energy density, and compare the use of polarization power spectra with an optimal quadratic estimator of the lensing. Results are given as a function of systematics level from residual foreground contamination. A realistic CMBpol experiment can effectively constrain the sum of neutrino masses to within 0.05 eV and the fraction of early dark energy to 0.002. We also present a surprisingly simple prescription for calculating dark energy equation of state constraints in combination with supernova distances from JDEM.Comment: 18 pages, 14 figures. Small changes made to match version to be published in Phys. Rev.
    • …
    corecore